Aktualnie temat nanorurek węglowych wywołuje ogromne zainteresowanie zarówno środowiska naukowego, jak i rynku urządzeń elektronicznych.

O zasadzie działania i kierunkach rozwoju organicznych ogniw fotowoltaicznych (OOF) można przeczytać, m. in. w artykułach „Organiczne ogniwa fotowoltaiczne” oraz „Kierunki rozwoju organicznych ogniw słonecznych”, publikowanych w numerach 3/2008 i 8/2010 „Czystej Energii”.
Niniejszy tekst poświęcony jestprzeglądowi aktualnych danych dotyczących wykorzystania nanorurek węglowych jako komponentów w budowie ogniw fotowoltaicznych. Nanorurki węglowe to alotropowa odmiana węgla. Można je sobie wyobrazić jako walce utworzone ze zwiniętego arkusza grafenowego, zbudowanego z regularnych sześciokątów. Długość tych walców może być kilka rzędów wielkości większa od ich średnicy. Najbardziej interesujące są nanorurki jednościenne, zbudowane z jednej warstwy atomów węgla (rys. 1).
 
Charakterystyka nanorurek
Nanorurki jednościenne, w zależności od średnicy (ok. 1-2 nm) i chiralności (sposobu ułożenia heksagonalnych pierścieni względem siebie), wykazują różne właściwości elektronowe: metaliczne bądź półprzewodnikowe. Należy podkreślić, że elektrony w nanorurce poruszają się jedynie wzdłuż jej osi, więc można traktować ją jako jednowymiarowy przewodnik.
Projekt badawczy dotyczący wykorzystania osiągnięć nanotechnologii do wytworzenia tanich i efektywnych ogniw słonecznych1 podjęła w 2005 r. m in. firma Konarka wraz z Solaris Nanosciences.
Organiczne ogniwa słoneczne zbudowane są z kilku warstw lub z mieszaniny różnych materiałów organicznych (głównie polimerów przewodzących), umieszczonych między elektrodami. Konieczne jest, aby jeden z nich był dobrym akceptorem elektronów (chętnie przyjmował elektrony), natomiast drugi powinien być dobrym donorem elektronów (chętnie oddawał elektrony). Wskutek absorpcji światła, w miejscach, gdzie dwa materiały stykają się ze sobą, dochodzi do wzbudzenia optycznego i generacji nośników ładunku.
 
Powstałe nośniki ładunku migrują do elektrod, czyli w układzie płynie prąd. Istotna dla tego procesu jest wysoka ruchliwość nośników ładunku, czego, niestety, nie obserwuje się w przypadku wielu materiałów organicznych. Dane literaturowe wskazują, że nanorurki węglowe są interesującym materiałem do zastosowania w OOF nie tylko ze względu na własności mechaniczne (giętkość, lekkość), ale przede wszystkim z uwagi na właściwości elektryczne i dużą powierzchnię właściwą. Domieszkowanie wybranych materiałów nanorurkami węglowymi może wpływać na zwiększenie ruchliwości nośników ładunku. Doskonałe właściwości elektryczne nanorurek węglowych oraz duża powierzchnia właściwa sprawiają, że nośniki ładunku mogą być transportowane przez swojego rodzaju „kanały” utworzone z nanorurek, co ułatwia ich migrację do elektrod (rys. 2).
 
Sieć nanostruktur jednowymiarowych pozwala na szybsze zbieranie i transport nośników ładunku, co przekłada się na większy przepływ prądu przez ogniwo. Zastosowanie nanorurek węglowych w warstwie aktywnej ogniwa daje zatem szansę na uzyskanie urządzeń o dużej wydajności konwersji energii. Należy podkreślić, że obserwuje się poprawę parametrów pracy ogniwa przy niewielkiej zawartości nanorurek węglowych w warstwie aktywnej. Zatem cena nanorurek nie jest w tym przypadku czynnikiem znacząco wpływającym na koszt produkcji całego ogniwa.
Firma Konarka, która wprowadziła na rynek ogniwa słoneczne w postaci cienkich, elastycznych folii, tzw. Power Plastic, pracuje nadal nad poprawą ich parametrów. Między innymi opatentowała technologię wytwarzania ogniw z dodatkiem nanorurek węglowych1.
W 2010 r. naukowcy z Instytutu Technologii w New Jersey zaprezentowali tanie ogniwa, które zostały wytworzone metodą nadruku na elastycznym polimerowym podłożu. Nowością było to, że nadrukowywany materiał stanowiłyby odpowiednio przygotowane nanorurki węglowe2.
 
Ogniwa hybrydowe
Kolejnym typem ogniw fotowoltaicznych, z powodzeniem promowanych przez takie firmy jak Sony, Dyesol, Solaronix czy Konarka są barwnikowe ogniwa hybrydowe. Zasadniczo ogniwa barwnikowe składają się z wysoce porowatej warstwy półprzewodzącego tlenku tytanu, nasączonego barwnikiem, którego rolą jest absorbowanie światła. Struktura ta umieszczona jest między dwiema elektrodami, a przestrzeń między elektrodami wypełnionia jest elektrolitem. Od czasu odkrycia tego typu ogniw w latach 90., badacze szukają nowych materiałów, którymi można zastąpić te używane w klasycznej wersji ogniwa. Niedawno pojawiły się doniesienia o zastosowaniu w ogniwach barwnikowych odpowiednio przygotowanego kompozytu nanorurek węglowych i dwutlenku tytanu. Najprostsza metoda przygotowania takiego kompozytu polega na bezpośrednim mieszaniu tych dwóch substancji w obecności związków pomocniczych.
Bardziej skoplikowany sposób polega na przeprowadzeniu reakcji chemicznej, w wyniku której otrzymuje się nanorurki węglowe pokryte warstwą dwutlenku tytanu. Podobnie jak w ogniwach polimerowych, spodziewanym efektem jest utworzenie się trójwymiarowej sieci połączonych nanorurek, które szybciej odprowadzają ładunki do elektrod (rys. 3). Co ważne, już mała ilość nanorurek węglowych, rzędu 0,1-0,3% zawartości wagowej, pozwala na zwiększenie wydajności ogniwa o 40-100%, głównie przez zwiększenie natężenia prądu, jakie wytwarza ogniwo3.
 
Ważny element ogniwa – elektroda
We wszystkich typach ogniw fotowoltaicznych istotnym elementem jest przednia elektroda, przez którą oświetlane jest ogniwo. Musi być ona wykonana z materiału przezroczystego, będącego jednocześnie dobrym przewodnikiem elektrycznym.
 Istnieje niewiele materiałów, które spełniają obydwa kryteria. Obecnie do tego celu stosuje przewodzące tlenki metali, głównie tlenek indowo-cynowy (ITO). Tlenki metali są kruche, zatem nie mogą być stosowane przy konstrukcji elastycznych ogniw słonecznych. Co więcej, zawartość indu w skorupie ziemskiej jest stosunkowo mała i wynosi 0,049 ppm, czyli tylko ok. 10 razy więcej niż zawartość platyny.
W ciągu ostatnich pięciu lat, w związku z rosnącym popytem na ind, jego cena znacząco wzrosła. Należy zatem przypuszczać, że zwiększenie produkcji ogniw PV może zostać ograniczone przez gwałtowny wzrost cen tego metalu. Dlatego też coraz większe zainteresowanie budzą transparentne elektrody wykonane z nanorurek węglowych (fot. 1 i 2).
 
Elektrody z nanorurek węglowych charakteryzują się wysokim przewodnictwem oraz odznaczają się wyższą niż ITO przepuszczalnością dla światła widzialnego, sięgającą nawet 99%, a jednocześnie przepuszczając również promieniowanie podczerwone. Kolejną zaletą jest duża elastyczność, nieporównywalna z ITO, oraz odporność na warunki zewnętrzne. Elektrody takie można wytworzyć tanimi metodami, jak np. nadruk czy natrysk. Według danych firmy Eikos, producenta materiału elektrodowego z nanorurek węglowych, znanego pod nazwą handlową Invisicon®, koszt jednostkowy wyprodukowania takiej elektrody jest już w tej chwili o jedną trzecią mniejszy niż elektrody z ITO4.
Firma Eikos nie jest monopolistą na rynku transparentnych elektrod. Konkuruje bowiem m.in. z przedsiębiorstwem Unidym, sprzedającym elektrody wykonane z nanorurek już od 2009 r. Ich odbiorcami są tacy potentaci jak Samsung Electronics5.
Na rynku obecne są również gotowe półprodukty, z których łatwo można takie przezroczyste elektrody wytworzyć. Przykładowo firma Nanoamor sprzedaje nanorurki węglowe wymieszane z polistyrenem w stosunku 1:9, co obniża opór elektryczny polistyrenu milion razy6. Warto wspomnieć, że elektrody z dodatkiem lub w całości wytworzone z cienkich warstw sieci nanorurek węglowych są używane również w bateriach litowo-jonowych, znacznie zwiększając ich pojemność.
Szybki rozwój technologii wytwarzania elektrod z nanorurek węglowych zawdzięczamy wzrostowi zapotrzebowania na przewodzące, elastyczne, wytrzymałe i przezroczyste elektrody, wliczając w to sektor wyświetlaczy urządzeń elektronicznych, ekranów dotykowych, systemów oświetleniowych i w końcu fotowoltaikę. Oprócz wyjątkowych właściwości optoelektronicznych, cienkie warstwy z nanorurek węglowych są wytrzymałe mechanicznie i chemicznie. Dodatkowo, regulując średnicę stosowanych nanorurek, możemy zmieniać zabarwienie warstwy, od całkowicie bezbarwnej – aż do uzyskania efektu barwionego szkła, czyniąc instalacje fotowoltaiczne również estetycznymi.
 
Nanorurkowa antena
Jak wynika z badań prowadzonych wInstytutucie Technologii w Massachusetts (MIT), z nanorurek węglowych można również wytworzyć swojego rodzaju anteny energii słonecznej, które wychwytują światło widzialne i kierują je na ogniwo. Według pomysłodawców, dzięki nanorurkowym antenom możliwe jest 100-krotnie większe skupianie energii słonecznej, co pozwala na znaczne zmniejszenie wymiarów ogniwa, przy zachowaniu takiej samej wydajności konwersji energii. Efekt ten jest zwłaszcza pożądany w regionach kuli ziemskiej, o słabszym nasłonecznieniu7.
Rozwój technologiczny pozwala na otrzymywanie nanorurek węglowych na dużą skalę, obniżając ich cenę, zatem należy przypuszczać, że staną się one wkrótce materiałem powszechnie stosowanym.
 
Źródła
1. http://www.konarka.com.
2. http://www.njit.edu.
3. Kongkanand (et al.): Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons. Nano Lett.” 3/2007.
4. http://www.eikos.com.
5. http://www.unidym.com
6. http://www.nanoamor.com.
7. Massachusetts Institute of Technology. Funneling solar energy: Antenna made of carbon nanotubes could make photovoltaic cells more efficient. „ScienceDaily”12.09.2010.
 
dr inż. Kamila Żelechowska, inż. Adam Wróbel,
Katedra Fizyki Zjawisk Elektronowych,
Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska